Statistics for Engineers Lecture 2 Discrete Distributions

Chong Ma

Department of Statistics
University of South Carolina
chongm@email.sc.edu

January 18, 2017

Outline

(1) Discrete Distribution
(2) Binomial Distribution
(3) Geometric Distribution

4 Negative Binomial Distribution
(5) Hypergeometric Distribution
(6) Poisson Distribution

Discrete Distribution

Suppose that Y is a discrete random variable. The function

$$
P_{Y}(y)=P(Y=y)
$$

is called the probability mass function(pmf) for Y. The pmf $p_{Y}(y)$ is a function that assigns probabilities to each possible value of Y, satisfying the following
(1) $0<p_{Y}(y)<1$, for all possible values of y .
(2) The sum of the probabilities, taken over all possible values of Y, must equal 1; i.e., $\sum_{y} p_{Y}(y)=1$.
The cumulative distribution function(cdf) of Y is

$$
F_{Y}(y)=P(Y \leq y)
$$

(1) The cfd $F_{Y}(y)$ is a nondecreasing function.
(2) $0 \leq F_{Y}(y) \leq 1$

Discrete Distribution

The expected value of Y is given by

$$
\mu=E(Y)=\sum_{y} y p_{Y}(y)
$$

The variance of Y is given by

$$
\sigma^{2}=\operatorname{var}(Y)=E\left[(Y-\mu)^{2}\right]=\sum_{y}(y-\mu)^{2} p_{Y}(y)
$$

The standard deviation of Y is given by

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\operatorname{var}(Y)}
$$

Equivalently, $\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}$. The expected value for a discrete random variable Y is a weighted average of the possible values of Y. The variance is weighted distance(squared difference) of the possible values of Y from the mean.

Discrete Distribution

Let Y be a discrete r.v. with pmf $p_{Y}(y)$. Suppose that g is a real-valued function. Then $g(Y)$ is a random variable and

$$
E[g(Y)]=\sum_{y} g(y) p_{Y}(y)
$$

Furthermore, let $g_{1}, g_{2}, \ldots, g_{k}$ are real-valued functions, and c is any real constant. Expectations satisfy the following (linearity) properties:

- $E(c)=c$
- $E(c g(Y))=c E(g(Y))$
- $E\left(\sum_{j=1}^{k} g_{j}(Y)\right)=\sum_{j=1}^{k} E\left[g_{j}(Y)\right]$

Discrete Distribution

Example A mail-order computer business has six telephone lines. Let Y denote the number of lines in use at a specific time. Suppose that the probability mass function(pmf) of Y is given by

y	0	1	2	3	4	5	6
$p_{Y}(y)$	0.10	0.15	0.20	0.25	0.20	0.06	0.04

The expected value of Y is

$$
\begin{aligned}
\mu & =E(Y)=\sum_{y} y P_{Y}(y) \\
& =0(0.10)+1(0.15)+2(0.20)+3(0.25)+4(0.20)+5(0.06)+6(0.04) \\
& =2.64
\end{aligned}
$$

Discrete Distribution

The variance of Y is

$$
\begin{aligned}
\sigma^{2} & =E\left[(Y-\mu)^{2}\right]=\sum_{y}(y-\mu)^{2} P_{Y}(y) \\
& =(0-2.64)^{2} 0.10+(1-2.64)^{2} 0.15+(2-2.64)^{2} 0.20 \\
& +(3-2.64)^{2} 0.25+(4-2.64)^{2} 0.20+(5-2.64)^{2} 0.06 \\
& +(6-2.64)^{2} 0.04=2.37
\end{aligned}
$$

Alternatively, Note that

$$
\begin{aligned}
E\left(Y^{2}\right) & =\sum_{y} y^{2} P_{Y}(y) \\
& =0^{2}(0.10)+1^{2}(0.15)+2^{2}(0.20)+3^{2}(0.25)+4^{2}(0.20) \\
& +5^{2}(0.06)+6^{2}(0.04)=9.34
\end{aligned}
$$

Thus, $\sigma^{2}=E\left(Y^{2}\right)-[E(Y)]^{2}=9.34-2.64^{2}=2.37$

Discrete Distribution

(a) What is the probability that exactly two lines are in use?

$$
p_{Y}(2)=P(Y=2)=0.20
$$

(b) What is the probability that at most two lines are in use?

$$
\begin{aligned}
P(Y \leq 2) & =F_{Y}(2)=P(Y=0)+P(Y=1)+P(Y=2) \\
& =p_{Y}(0)+p_{Y}(1)+p_{Y}(2) \\
& =0.10+0.15+0.20=0.45
\end{aligned}
$$

(c) What is the probability that at least five lines are in use?

$$
\begin{aligned}
P(Y \geq 5) & =\bar{F}_{Y}(5)=1-F_{Y}(5) \\
& =P(Y=5)+P(Y=6) \\
& =p_{Y}(5)+p_{Y}(6) \\
& =0.06+0.04=0.10
\end{aligned}
$$

Outline

(1) Discrete Distribution
(2) Binomial Distribution
(3) Geometric Distribution

4 Negative Binomial Distribution
(5) Hypergeometric Distribution
(6) Poisson Distribution

Binomial Distribution

Bernoulli trials: Many experiments can be considered as consisting of a sequence of "trials" such that

- Each trial results in a "success" or a "failure".
- The trials are independent.
- The probability of "success", denoted by p , is the same on every trial.

Examples

(1) When circuit boards used in the manufacture of Blue Ray players are tested, the long-run percentage of defective boards is 5%.

- circuite board = "trial"
- defective board is observed $=$ "success"
- $p=P($ "success" $)=P($ defective board $)=0.05$
(2) Ninety-eight percent of all air traffic radar signals are correctly interpreted the first time they are transmitted.
- radar signal $=$ "trial"
- signal is correctly interpreted $=$ "success"
- $p=P($ "success" $)=P($ correct interpretation $)=0.98$

Binomial Distribution

Suppose that n Bernoulli trials are performed. Define
$Y=$ the number of successes(out of n trials performed)
we say that Y has a binomial distribution with number of trials n and success probability p, denoted by $Y \sim b(n, p)$.
The probability mass function(pmf) of Y is given by

$$
p_{Y}(y)= \begin{cases}\binom{n}{y} p^{y}(1-p)^{n-y}, & y=0,1, \ldots, n \\ 0, & \text { otherwise }\end{cases}
$$

The mean/variance of Y are

$$
\mu=E(Y)=n p, \sigma^{2}=\operatorname{var}(Y)=n p(1-p)
$$

Binomial Distribution

Figure 1: Plots of PMF and CDF for Binomial distribution

Binomial Distribution

Example In an agricultural study, it is determined that 40% of all plots respond to a certain treatment. Four plots are observed. In this situation, we interpret that

- plot of land $=$ "trial"
- plot responds to treatment $=$ "success"
- $\mathrm{p}=\mathrm{P}($ "success" $)=P($ responds to treatment $)=0.4$

If the Bernoulli trial assumptions hold(independent plots, same response probability for each plot), then
$Y=$ the number of plots which respond $\sim b(n=4, p=0.4)$
(a) What is the probability that exactly two plots respond?
(b) What is the probability that at least one plot responds?
(c) what are $E(Y)$ and $\operatorname{var}(Y)$?

Binomial Distribution

(a) What is the probability that exactly two plots respond?

$$
\begin{aligned}
P(Y=2) & =\binom{4}{2}(0.4)^{2}(1-0.4)^{2} \\
& =6(0.4)^{2}(0.6)^{2}=0.3456
\end{aligned}
$$

(b) What is the probability that at least one plot responds?

$$
\begin{aligned}
P(Y \geq 1) & =1-P(Y=0) \\
& =1-\binom{4}{0}(0.4)^{0}(1-0.4)^{4} \\
& =1-(0.6)^{4}=0.8704
\end{aligned}
$$

(c) what are $E(Y)$ and $\operatorname{var}(Y)$?
$E(Y)=n p=4(0.4)=1.6$
$\operatorname{var}(Y)=n p(1-p)=4(0.4)(0.96)=0.96$

Binomial Distribution

Example An electronics manufacturer claims that 10% of its power supply units need servicing during the warranty period. Technicians at a testing laboratory purchase 30 units and simulate usage during the warranty period. We interpret

- power supply unit $=$ "trial"
- supply unit needs servicing during warranty period = "success"
- $\mathrm{p}=\mathrm{P}($ "success" $)=\mathrm{P}$ (supply unit needs servicing) $=0.1$
(a) What is the probability that exactly five of the 30 power supply units require servicing during the warranty period?
(b) What is the probability that at most five of the 30 power supply units require servicing during the warranty period?
(c) What is the probability that at least five of the 30 power supply units require servicing during the warranty period?
(d) What is $P(2 \leq Y \leq 8)$?

Binomial Distribution

(a) What is the probability that exactly five of the 30 power supply units require servicing during the warranty period?
$p_{Y}(5)=P(Y=5)=\binom{30}{5}(0.1)^{5}(0.9)^{30-5}=0.1023$
(b) What is the probability that at most five of the 30 power supply units require servicing during the warranty period?
$F_{Y}(5)=P(Y \leq 5)=\sum_{y=0}^{5}\binom{30}{y}(0.1)^{y}(0.9)^{30-y}=0.9268$
(c) What is the probability that at least five of the 30 power supply units require servicing during the warranty period?
$P(Y \geq 5)=1-\sum_{y=0}^{4}\binom{30}{y}(0.1)^{y}(0.9)^{30-y}=0.1755$
(d) What is $P(2 \leq Y \leq 8)$?
$P(2 \leq Y \leq 8)=\sum_{y=2}^{8}\binom{30}{y}(0.1)^{y}(0.9)^{30-y}=0.8143$

$$
\begin{array}{cc}
p_{Y}(y)=P(Y=y) & F_{Y}(y)=P(Y \leq y) \\
\hline \text { dbinom }(\mathrm{y}, \mathrm{n}, \mathrm{p}) & \text { pbinom }(\mathrm{y}, \mathrm{n}, \mathrm{p})
\end{array}
$$

Table 1: R code for Binomial Distribution

Outline

(1) Discrete Distribution
(2) Binomial Distribution
(3) Geometric Distribution

4 Negative Binomial Distribution
(5) Hypergeometric Distribution
(6) Poisson Distribution

Geometric Distribution

The geometric distribution also arises in experiments involving Bernoulli trials:
(1) Each trial results in a "success" or a "failure".
(2) The trials are independent.
(3) The probability of "success", denoted by $p, 0<p<1$, is the same on each trial.

Suppose that Bernoulli trials are continuously observed. Define
$Y=$ the number of trials to observe the first success
We say that Y has a geometric distribution with success probability p. For short, $Y \sim \operatorname{geom}(p)$. The probability mass function(pmf) of Y is

$$
p_{Y}(y)=\left\{\begin{array}{cl}
(1-p)^{y-1} p, & y=1,2,3, \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

Geometric Distribution

If $Y \sim \operatorname{geom}(p)$, then

$$
\begin{aligned}
\text { mean } E(Y) & =\frac{1}{p} \\
\text { variance } \operatorname{var}(Y) & =\frac{1-p}{p^{2}}
\end{aligned}
$$

Example Biology students are checking the eye color of fruit flies. For each fly, the probability of observing while eyes is $p=0.25$. We interpret

- friut fly = "trial"
- fly has while eyes $=$ "success"
- $p=P($ "success" $)=0.25$

If the Bernoulli trial assumptions hold(independent flies, same probability of white eyes for each fly)
$Y=$ the number of flies needed to find the first white-eyed $\sim \operatorname{geom}(p=0.25)$

Geometric Distribution

(a) What is the probability the first white-eyed fly is observed on the fifth fly checked?

$$
p_{Y}(5)=P(Y=5)=(1-0.25)^{5-1}(0.25) \approx 0.079
$$

(b) What is the probability the first white-eyed fly is observed before the fourth fly is examined?

$$
\begin{aligned}
F_{Y}(3) & =P(Y \leq 3)=P(Y=1)+P(Y=2)+P(Y=3) \\
& =(1-0.25)^{1-1}(0.25)+(1-0.25)^{2-1}(0.25)+(1-0.25)^{3-1}(0.25) \\
& =0.25+0.1875+0.140625 \approx 0.578
\end{aligned}
$$

$$
\begin{array}{cc}
p_{Y}(y)=P(Y=y) & F_{Y}(y)=P(Y \leq y) \\
\hline \text { dgeom }(\mathrm{y}-1, \mathrm{p}) & \text { pgeom }(\mathrm{y}-1, \mathrm{p}) \\
\hline
\end{array}
$$

Table 2: R code for Geometric Distribution

Geometric Distribution

Figure 2: Plots of PMF and CDF for Geometric distribution

Outline

(1) Discrete Distribution
(2) Binomial Distribution
(3) Geometric Distribution

4 Negative Binomial Distribution
(5) Hypergeometric Distribution
(6) Poisson Distribution

Negative Binomial Distribution

The negative binomial distribution also arises in experiments involving Bernoulli trials:
(1) Each trial results in a "success" or a "failure".
(2) The trials are independent.
(3) The probability of "success", denoted by $p, 0<p<1$, is the same on each trial.
Suppose that Bernoulli trials are continuously observed. Define
$Y=$ the number of trials to observe the r th success
We say that Y has a negative binomial distribution with success probability p. For short, $Y \sim n i b(r, p)$. The probability mass function(pmf) of Y is

$$
p_{Y}(y)=\left\{\begin{array}{cl}
\binom{y-1}{r-1} p^{r}(1-p)^{y-r}, & y=r, r+1, \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

Negative Binomial Distribution

If $Y \sim \operatorname{nib}(r, p)$, then

$$
\begin{gathered}
\text { mean } E(Y)=\frac{r}{p} \\
\text { variance } \operatorname{var}(Y)=\frac{r(1-p)}{p^{2}}
\end{gathered}
$$

Example At an automotive paint plant, 15% of all batches sent to the lab for chemical analysis do not conform to specifications. In this situation, We interpret

- batch = "trial"
- batch does not conform = "success"
- $p=P($ "success" $)=0.15$

If the Bernoulli trial assumptions hold(independent flies, same probability of white eyes for each fly)
$Y=$ the number of batches needed to find the third nonconforming $\sim n i b(r=3, p=0.15)$

Negative Binomial Distribution

(a) What is the probability the third nonconforming batch is observed on the tenth batch sent to the lab?

$$
\begin{aligned}
p_{Y}(10) & =P(Y=10)=\binom{10-1}{3-1}(0.15)^{3}(1-0.15)^{10-3} \\
& =\binom{9}{2}(0.15)^{2}(0.85)^{7} \sim 0.039
\end{aligned}
$$

(b) What is the probability no more than two nonconforming batches will be observed among the first 30 batches sent to the lab? Note: It implies the third nonconforming batch must be observed on the 31st batch tested, the 32nd, the 33rd, etc.

$$
\begin{aligned}
P(Y \geq 31) & =1-P(Y \leq 30) \\
& =1-\sum_{y=3}^{30}\binom{y-1}{3-1}(0.15)^{3}(1-0.15)^{y-3} \approx 0.151
\end{aligned}
$$

Negative Binomial Distribution

Figure 3: Plots of PMF and CDF for negative binomial distribution

$p_{Y}(y)=P(Y=y)$	$F_{Y}(y)=P(Y \leq y)$
dnbinom $(y-r, r, \mathrm{p})$	pnbinom $(\mathrm{y}-\mathrm{r}, \mathrm{r}, \mathrm{p})$

Table 3: R code for negative binomial Distribution

Outline

(1) Discrete Distribution
(2) Binomial Distribution
(3) Geometric Distribution

4 Negative Binomial Distribution
(5) Hypergeometric Distribution
(6) Poisson Distribution

Hypergeometric Distribution

Setting: Consider a population of N objects and suppose that each object belongs to one of two dichotomous classes: class 1 and class 2. For example, the objects(classes) might be people(infected/not), parts(conforming/not), plots of land(respond to treatment/not), etc. In the population of interest, we have

$$
\begin{aligned}
N & =\text { total number of objects } \\
r & =\text { number of objects in class } 1 \\
N-r & =\text { number of objects in class } 2
\end{aligned}
$$

Envision taking a sample n objects from the population(objects are selected at random and without replacement). Define
$Y=$ the number of objects in class 1 (out of the ne selected)
We say that Y has a hypergeometric distribution, $Y \sim \operatorname{hyper}(N, n, r)$.

Hypergeometric Distribution

If $Y \sim \operatorname{hyper}(N, n, r)$, the the probability mass function of Y is given by

$$
p_{Y}(y)= \begin{cases}\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}}, & y \leq r \text { and } n-y \leq N-r \\ 0, & \text { otherwise }\end{cases}
$$

The mean and variance of Y, mean $E(Y)=n\left(\frac{r}{N}\right)$
variance $\operatorname{var}(Y)=n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$

$$
\begin{array}{cc}
p_{Y}(y)=P(Y=y) & F_{Y}(y)=P(Y \leq y) \\
\hline \text { dhyper }(\mathrm{y}, \mathrm{r}, \mathrm{~N}-\mathrm{r}, \mathrm{n}) & \operatorname{phyper}(\mathrm{y}, \mathrm{r}, \mathrm{~N}-\mathrm{r}, \mathrm{n})
\end{array}
$$

Table 4: R code for hypergeometric Distribution

Hypergeometric Distribution

Example A supplier ships parts to a company in lots of 100 parts. The company has an acceptance sampling plan which adopts the following acceptance rule:
"...sample 5 parts at random and without replacement. If there are no defectives in the sample, accept the entire lot; otherwise, reject the entire lot."
The population size is $N=100$, the sample size $n=5$. The random variable

$$
\begin{aligned}
Y & =\text { the number of defectives in the sample } \\
& \sim \operatorname{hyper}(N=100, n=5, r)
\end{aligned}
$$

(a) If $r=10$, what is the probability that the lot will be accepted?
(b) If $r=10$, what is the probability that at least $\mathbf{3}$ of the 5 parts sampled are defective?

Hypergeometric Distribution

(a) If $r=10$, what is the probability that the lot will be accepted?

$$
p_{y}(0)=\frac{\binom{10}{0}\binom{90}{5}}{\binom{100}{5}} \approx 0.584
$$

(b) If $r=10$, what is the probability that at least $\mathbf{3}$ of the 5 parts sampled are defective?

$$
\begin{aligned}
P(Y \geq 3) & =1-P(Y \leq 2) \\
& =1-[p(Y=0)+P(Y=1)+P(Y=2)] \\
& =1-\left[\frac{\binom{10}{0}\binom{90}{5}}{\binom{100}{5}}+\frac{\binom{10}{1}\binom{90}{4}}{\binom{100}{5}}+\frac{\binom{10}{2}\binom{90}{3}}{\binom{100}{5}}\right] \\
& =1-(0.584+0.339+0.070) \approx 0.007
\end{aligned}
$$

Hypergeometric Distribution

Figure 4: Plots of PMF and CDF for Hypergeometric distribution

Outline

(1) Discrete Distribution
(2) Binomial Distribution
(3) Geometric Distribution

4 Negative Binomial Distribution
(5) Hypergeometric Distribution
(6) Poisson Distribution

Possion Distribution

The Poisson distribution is commonly used to model counts, such as
(1) the number of customers entering a post office in a given hour.
(2) the number of machine breakdowns per month
(3) the number of insurance claims received per day
(4) the number of defects on a piece of raw material In general, we define
$Y=$ the number of occurrence over a unit interval of time(or space)
A Poisson distribution for Y emerges if "occurrences" obey the following postulates:
P1. The number of occurrences in non-overlapping intervals are independent.
P2. The probability of an occurrence is proportional to the length of the interval.
P3. The probability of 2 or more occurrences in a sufficiently short interval is 0 .

Possion Distribution

We say that Y has a Poisson distribution, denoted by $Y \sim \operatorname{Poisson}(\lambda)$. A process that produces occurrences according to these postulates is called a Poisson Process. If $Y \sim \operatorname{Poisson}(\lambda)$, the probability mass function of Y is

$$
p_{Y}(y)=\left\{\begin{array}{cl}
\frac{\lambda^{y} e^{-\lambda}}{y!}, & y=0,1,2, \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

And the mean/variance of Y is

$$
\begin{gathered}
\text { mean } E(Y)=\lambda \\
\text { variance } \operatorname{Var}(Y)=\lambda
\end{gathered}
$$

$$
\begin{array}{cc}
\hline p_{Y}(y)=P(Y=y) & F_{Y}(y)=P(Y \leq y) \\
\hline \operatorname{dpois}(\mathrm{y}, \lambda) & \operatorname{ppois}(\mathrm{y}, \lambda)
\end{array}
$$

Table 5: R code for Poisson Distribution

Possion Distribution

Example Let Y denote the number of times per month that a detectable amount of radioactive gas is recorded at a nuclear power plant. Suppose that Y follows a Poisson distribution with mean $\lambda=2.5$ times per month.
(a) What is the probability that there are exactly three times a detectable amount of gas is recorded in a given month?

$$
P(Y=3)=\frac{(2.5)^{3} e^{-2.5}}{3!}=\frac{15.625 e^{-2.5}}{6} \approx 0.214
$$

(b) What is the probability that there are no more than three times a detectable amount of gas is recorded in a given month?

$$
\begin{aligned}
P(Y \leq 3) & =P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3) \\
& =\frac{(2.5)^{0} e^{-2.5}}{0!}+\frac{(2.5)^{1} e^{-2.5}}{1!}+\frac{(2.5)^{2} e^{-2.5}}{2!}+\frac{(2.5)^{3} e^{-2.5}}{3!} \\
& \approx 0.544
\end{aligned}
$$

Possion Distribution

Figure 5: Plots of PMF and CDF for negative binomial distribution

